quadratically integrable function - определение. Что такое quadratically integrable function
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое quadratically integrable function - определение

ON WHEN A FUNCTION ON CONVEX BODY K DOES NOT DECREASE IF K IS TRANSLATED INWARDS
Globally integrable function

Square-integrable function         
FUNCTION WHOSE SQUARED ABSOLUTE VALUE HAS FINITE INTEGRAL
Square-integrable; Square integrable; Square integrable function; L2 space; L2 Space; L2-space; L2-function; L2-inner product; L^2; Quadratic integrability; Quadratically integrable; Square-summable function; Square integrability; Quadratically integrable function; L² space; Square-integrable functions; Square-integrability
In mathematics, a square-integrable function, also called a quadratically integrable function or L^2 function or square-summable function, is a real- or complex-valued measurable function for which the integral of the square of the absolute value is finite. Thus, square-integrability on the real line (-\infty,+\infty) is defined as follows.
Locally integrable function         
Locally integrable; Local integrability; Locally summable function
In mathematics, a locally integrable function (sometimes also called locally summable function)According to . is a function which is integrable (so its integral is finite) on every compact subset of its domain of definition.
Tau function (integrable systems)         
Draft:Tau function (integrable systems)
Tau functions are an important ingredient in the modern theory of integrable systems, and have numerous applications in a variety of other domains. They were originally introduced by Ryogo Hirota in his direct method approach to soliton equations, based on expressing them in an equivalent bilinear form.

Википедия

Anderson's theorem

In mathematics, Anderson's theorem is a result in real analysis and geometry which says that the integral of an integrable, symmetric, unimodal, non-negative function f over an n-dimensional convex body K does not decrease if K is translated inwards towards the origin. This is a natural statement, since the graph of f can be thought of as a hill with a single peak over the origin; however, for n ≥ 2, the proof is not entirely obvious, as there may be points x of the body K where the value f(x) is larger than at the corresponding translate of x.

Anderson's theorem, named after Theodore Wilbur Anderson, also has an interesting application to probability theory.